Showing posts with label dotnet. Show all posts
Showing posts with label dotnet. Show all posts

Reading Notes #665

In this edition, we explore modern development's evolving landscape. From Microsoft's .NET Aspire simplifying distributed applications to AI security considerations, Git workflow optimizations, and backlog management strategies, there's something here to spark your next breakthrough.


The tech world never sleeps, and neither does innovation. Let's explore what caught my attention this week and might just spark your next big idea or solve that problem you've been wrestling with.

Programming


AI


Open Source


Podcast


~frank

Reading Notes #664

Welcome to another edition of my weekly reading notes! This week's collection brings together some fascinating developments across the tech landscape. From the intricacies of building cross-platform .NET tools to impressive AI breakthroughs like Warp's stellar performance on SWE-bench, there's plenty to explore. I've also discovered some thought-provoking content about leadership, product management, and the art of meaningful communication. Whether you're interested in the latest AI tools, looking for career insights, or simply want to stay current with industry trends, this week's selection has something valuable for every developer and tech professional.



Programming

  • Using and authoring .NET tools (Andrew Lock) - Interesting post that shares the behind-the-scenes when you're building a tool for multiple targets and the challenge that it represents. Those also share the new ways of .NET 10

AI

Podcasts

Miscellaneous

Sharing my Reading Notes is a habit I started a long time ago, where I share a list of all the articles, blog posts, and books that catch my interest during the week.

If you have interesting content, share it!

~frank

Using AI with .NET 10 Scripts: What Worked, What Didn’t, and Lessons Learned

I wanted to kick the tires on the upcoming .NET 10 C# script experience and see how far I could get calling Reka’s Research LLM from a single file, no project scaffolding, no .csproj. This isn’t a benchmark; it’s a practical tour to compare ergonomics, setup, and the little gotchas you hit along the way. I’ll share what worked, what didn’t, and a few notes you might find useful if you try the same.

All the sample code (and a bit more) is here: reka-ai/api-examples-dotnet · csharp10-script. The scripts run a small “top 3 restaurants” prompt so you can validate everything quickly.

We’ll make the same request in three ways:

  1. OpenAI SDK
  2. Microsoft.Extensions.AI for OpenAI
  3. Raw HttpClient

What you need

The C# "script" feature used below ships with the upcoming .NET 10 and is currently available in preview. If you prefer not to install a preview SDK, you can run everything inside the provided Dev Container or on GitHub Codespaces. I include a .devcontainer folder with everything set up in the repo.

Set up your API key

We are talking about APIs here, so of course, you need an API key. The good news is that it's free to sign up with Reka and get one! It's a 2-click process, more details in the repo. The API key is then stored in a .env file, and each script loads environment variables using DotNetEnv.Env.Load(), so your key is picked up automatically. I went this way instead of using dotnet user-secrets because I thought it would be the way it would be done in a CI/CD pipeline or a quick script.

Run the demos

From the csharp10-script folder, run any of these scripts. Each line is an alternative

dotnet run 1-try-reka-openai.cs
dotnet run 2-try-reka-ms-ext.cs
dotnet run 3-try-reka-http.cs

You should see a short list of restaurant suggestions.

Propmt Result: 3 restaurants


OpenAI SDK with a custom endpoint

Reka's API is using the OpenAI format; therefore, I thought of using the NuGet package OpenAI. To reference a package in a script, you use the #:package [package name]@[package version] directive at the top of the file. Here is an example:

#:package OpenAI@2.3.0

// ...

var baseUrl = "http://api.reka.ai/v1";

var openAiClient = new OpenAIClient(new ApiKeyCredential(REKA_API_KEY), new OpenAIClientOptions
{
    Endpoint = new Uri(baseUrl)
});

var client = openAiClient.GetChatClient("reka-flash-research");

string prompt = "Give me 3 nice, not crazy expensive, restaurants for a romantic dinner in Montreal";

var completion = await client.CompleteChatAsync(
    new List<ChatMessage>
    {
        new UserChatMessage(prompt)
    }
);

var generatedText = completion.Value.Content[0].Text;

Console.WriteLine($" Result: \n{generatedText}");

The rest of the code is more straightforward. You create a chat client, specify the Reka API URL, select the model, and then you send a prompt. And it works just as expected. However, not everything was perfect, but before I share more about that part, let's talk about Microsoft.Extensions.AI.

Microsoft Extensions AI for OpenAI

Another common way to use LLM in .NET is to use one ot the Microsoft.Extensions.AI NuGet package. In our case Microsoft.Extensions.AI.OpenAI was used.

#:package Microsoft.Extensions.AI.OpenAI@9.8.0-preview.1.25412.6

// ....

var baseUrl = "http://api.reka.ai/v1";

IChatClient client = new ChatClient("reka-flash-research", new ApiKeyCredential(REKA_API_KEY), new OpenAIClientOptions
{
    Endpoint = new Uri(baseUrl)
}).AsIChatClient();

string prompt = "Give me 3 nice, not crazy expensive, restaurants for a romantic dinner in Montreal";

Console.WriteLine(await client.GetResponseAsync(prompt));

As you can see, the code is very similar. Create a chat client, set the URL, the model, and add your prompt, and it works just as well.

That's two ways to use Reka API with different SDKs, but maybe you would prefer to go "SDKless", let's see how to do that.

Raw HttpClient calling the REST API

Without any SDK to help, there is a bit more line of code to write, but it's still pretty straightforward. Let's see the code:

using var httpClient = new HttpClient();

var baseUrl = "http://api.reka.ai/v1/chat/completions";

var requestPayload = new
{
    model = "reka-flash-research",
    messages = new[]
            {
                new
                {
                    role = "user",
                    content = "Give me 3 nice, not crazy expensive, restaurants for a romantic dinner in New York city"
                }
            }
};

using var request = new HttpRequestMessage(HttpMethod.Post, baseUrl);
request.Headers.Add("Authorization", $"Bearer {REKA_API_KEY}");
request.Content = new StringContent(jsonPayload, Encoding.UTF8, "application/json");

var response = await httpClient.SendAsync(request);

var responseContent = await response.Content.ReadAsStringAsync();

var jsonDocument = JsonDocument.Parse(responseContent);

var contentString = jsonDocument.RootElement
    .GetProperty("choices")[0]
    .GetProperty("message")
    .GetProperty("content")
    .GetString();

Console.WriteLine(contentString);

So you create an HttpClient, prepare a request with the right headers and payload, send it, get the response, and parse the JSON to extract the text. In this case, you have to know the JSON structure of the response, but it follows the OpenAI format.

What did I learn from this experiment?

I used VS Code while trying the script functionality. One thing that surprised me was that I didn't get any IntelliSense or autocompletion. I try to disable the DevKit extension and change the setting for OmniSharp, but no luck. My guess is that because it's in preview, and it will work just fine in November 2025 when .NET 10 will be released.

In this light environment, I encountered some issues where, for some reason, I couldn't use an https endpoint, so I had to use http. In the raw httpClient script, I had some errors with the Reflection that wasn't available. It could be related to the preview or something else, I didn't investigate further.

For the most part, everything worked as expected. You can use C# code to quickly execute some tasks without any project scaffolding. It's a great way to try out the Reka API and see how it works.

What's Next?

While writing those scripts, I encountered multiple issues that aren't related to .NET but more about the SDKs when trying to do more advanced functionalities like optimization of the query and formatting the response output. Since it goes beyond the scope of this post, I will share my findings in a follow-up post. Stay tuned!

Video version

Here is a video version of this post


Learn more

Reading Notes #663

Here are my reading notes for the week: a mix of AI research and evaluation, .NET and Linux troubleshooting, testing framework changes, and JavaScript/TypeScript perspectives, plus a few podcast episodes on C#, work design, and software modernization that I found worthwhile. 


AI

Programming

Podcasts


Sharing my Reading Notes is a habit I started a long time ago, where I share a list of all the articles, blog posts, and books that catch my interest during the week.

If you have interesting content, share it!

~frank

Reading Notes #661

This week post collects concise links and takeaways across .NET, AI, Docker, open source security, DevOps, and broader developer topics. From the .NET Conf call for content and Copilot prompts to Docker MCP tooling, container debugging tips, running .NET as WASM, and a fresh look at the 10x engineer idea.


Suggestion of the week

AI

Open Source

DevOps

Programming

Miscellaneous


Sharing my Reading Notes is a habit I started a long time ago, where I share a list of all the articles, blog posts, and books that catch my interest during the week.

If you have interesting content, share it!

~frank

Reading Notes #660

This week’s notes cover GenAI vs agentic AI, fresh Docker and Aspire news, how to run WordPress in containers, and building apps with React and .NET. Plus a few podcasts worth a listen.


Enjoy!

AI

Open Source

  • Does it Make Sense to Run WordPress in Docker? (Lukas Mauser) - Looking at different options to run  WordPress? Check out this blog post. All the code to do it in a docker container is shared and also details the reasons why you should do it or not

Programming

Podcasts

Miscellaneous


Reading Notes #659

This week's reading notes cover a variety of insightful topics, from enhancing your development environment with dev containers on Windows to prioritizing open-source bugs effectively. You'll also find helpful posts on integrating MFA into your login process, exploring RavenDB's vector search capabilities, and understanding the differences between Ask Mode and Agent Mode in Visual Studio.

Happy reading!

a wild turkey in my driveway
A wild turkey in my driveway!?

Suggestion of the week


Databases


Programming

  • Why You Should Incorporate MFA into Your Login Process (Suzanne Scacca) - You think the answer is simple, think again. Nice post that explains the difference between 2FA and MFA and why you should or should not implement one of those

  • Aspire Dashboard (Joseph Guadagno) - Great deep dive about the Aspire dashboard, learn all the features packed inside it


Open Source

  • How I Prioritize OSS Bugs (jeremydmiller) - A very instructive post on a real-life issue. It's harder than people think to prioritize. And it may help you write better bug reports...

AI


Sharing my Reading Notes is a habit I started a long time ago, where I share a list of all the articles, blog posts, and books that catch my interest during the week. 

If you have interesting content, share it! 

~frank

Reading Notes #658

This week, we explore the latest insights on AI, Cloud, and software development to keep you informed and inspired.

little branch with leaves and walnuts

Cloud

Programming

Databases

AI

Miscellaneous


Sharing my Reading Notes is a habit I started a long time ago, where I share a list of all the articles, blog posts, and books that catch my interest during the week. 

If you have interesting content, share it! 

~frank

Why Your .NET Code Coverage Badge is 'Unknown' in GitLab (And How to Fix It)


In a recent post, I shared how to set up a CI/CD pipeline for a .NET Aspire project on GitLab. The pipeline includes unit tests, security scanning, and secret detection, and if any of those fail, the pipeline would fail. Great, but what about code coverage for the unit tests? The pipeline included code coverage commands, but the coverage was not visible in the GitLab interface. Let's fix that.

(blog post en français ici)

Badge on Gitlab showing coverage unknown

The Problem

One thing I initially thought was that the regex used to extract the coverage was incorrect. The regex used in the pipeline was:

coverage: '/Total\s*\|\s*(\d+(?:\.\d+)?)%/'

That regex came directly from the GitLab documentation, so I thought it should work correctly. However, coverage still wasn't visible in the GitLab interface.

So with the help of GitHub Copilot, we wrote a few commands to validate:

  • That the coverage.cobertura.xml was in a consistent location (instead of being in a folder with a GUID name)
  • That the coverage.cobertura.xml file was in a valid format
  • What exactly the regex was looking for

Everything checked out fine, so why was the coverage not visible?

The Solution

It turns out that the coverage command with the regex expression is scanning the console output and not the coverage.cobertura.xml file. Aha! One solution was to install dotnet-tools to changing where the the test results was persisted; to the console instead of the XML file, but I preferred keeping the .NET environment unchanged.

The solution I ended up implementing was executing a grep command to extract the coverage from the coverage.cobertura.xml file and then echoing it to the console. Here's what it looks like:

- COVERAGE=$(grep -o 'line-rate="[0-9.]*"' TestResults/coverage.cobertura.xml | head -1 | grep -o '[0-9.]*' | awk '{printf "%.1f", $1*100}')
- echo "Total | ${COVERAGE}%"

Results

And now when the pipeline runs, the coverage is visible in the GitLab pipeline!



And the badge is updated to show the coverage percentage.

Coverage badge showing percentage


Complete Configuration

Here's the complete test job configuration. Of course, the full .gitlab-ci.yml file is available in the GitLab repository.

test:
  stage: test
  image: mcr.microsoft.com/dotnet/sdk:9.0
  <<: *dotnet_cache
  dependencies:
    - build
  script:
    - dotnet test $SOLUTION_FILE --configuration Release --logger "junit;LogFilePath=$CI_PROJECT_DIR/TestResults/test-results.xml" --logger "console;verbosity=detailed" --collect:"XPlat Code Coverage" --results-directory $CI_PROJECT_DIR/TestResults
    - find TestResults -name "coverage.cobertura.xml" -exec cp {} TestResults/coverage.cobertura.xml \;
    - COVERAGE=$(grep -o 'line-rate="[0-9.]*"' TestResults/coverage.cobertura.xml | head -1 | grep -o '[0-9.]*' | awk '{printf "%.1f", $1*100}')
    - echo "Total | ${COVERAGE}%"
  artifacts:
    when: always
    reports:
      junit: "TestResults/test-results.xml"
      coverage_report:
        coverage_format: cobertura
        path: "TestResults/coverage.cobertura.xml"
    paths:
      - TestResults/
    expire_in: 1 week
  coverage: '/Total\s*\|\s*(\d+(?:\.\d+)?)%/'

Conclusion

I hope this helps others save time when setting up code coverage for their .NET projects on GitLab. The key insight is that GitLab's coverage regex works on console output, not on the files (XML or other formats).

If you have any questions or suggestions, feel free to reach out!


~frank



Reading Notes #657

a rocky path ends at the shore of a lake
This week's collection of interesting articles and resources covers AI development, DevOps practices, and open source tools. From GitHub Copilot customization to local AI deployments and containerization best practices, here are the highlights worth your attention.

AI

DevOps

  • Local Deploy with Bicep (Sam Cogan) - A perfect short story, I'll explain why the hell bicep can now deploy locally and how to do it

Open Source

  • Introducing OpenCLI (Patrik Svensson) - A standard that describes CLI so both humans and agents can understand how it works. Love it!

~frank


Reading Notes #656

This week, we're exploring a wide range of topics, from .NET 10 previews and A/B testing to the latest in Azure development and AI. Plus, a selection of insightful podcast episodes to keep you informed and inspired.

Cloud


Programming

Open Source

  • Patrik Svensson (Patrik Svensson) - An interesting way to structure the flow that provides more detailed issues and PR with a clear purpose.

AI


Podcasts


~frank

Reading Notes #655

Welcome to the 655th Reading Notes. This edition explores embedding Python in .NET, working with stacked git branches, and an introduction to cloud-native. Plus, a quick tip for the Azure Portal and using local AI for code reviews. 

a kayak on the water with a tree at the horizon

Open Source

Programming

Cloud

AI


Sharing my Reading Notes is a habit I started a long time ago, where I share a list of all the articles, blog posts, and books that catch my interest during the week. 

If you have interesting content, share it!


~frank


Reading Notes #654

Welcome to another edition of my reading notes! This week, I’ve gathered a selection of insightful articles and resources covering topics like AI, cloud security, open source, and developer productivity. Whether you’re interested in best practices, new tools, or thought-provoking perspectives, there’s something here for everyone. 

Dive in and enjoy the highlights!

Suggestion of the week

  • Copilot, The Good Parts: Efficiency (Rob Conery) - I love that post, it's so true! There are good and bad ways to use any tools. And I personally would really like seeing Rob build his stuff. Let's him know If you think like me.

Programming

Open Source

Databases

Miscellaneous


~frank


Reading Notes #653

Welcome to Reading Notes #653 another packed edition of insights, tools, and updates from the tech world! This week's roundup dives into legendary engineering wisdom, AI controversies, and the latest innovations in Docker, Azure, and VS Code. Whether you're exploring MCP, refining your scripting skills, or gearing up for the newest Azure Developer CLI release, there's something here for every developer.

windmill on the cap of Ile Perrot

Let’s get into it!

Cloud

  • Azure Developer CLI (azd) - June 2025 (Kristen Womack) - Love that tool, great updates, so many new features and improvements in this version, very looking forward to try all of them, turning them all

AI

Programming

Miscellaneous


~frank

Reading Notes #652

This week, we explore a variety of topics, from database containerization and AI security risks to the evolving landscape of gaming devices and cloud technologies. We also explore the shift towards security-first development and the integration of .NET Aspire with SQL Server for integration testing.


Let's dive in!

Suggestion of the week

Cloud

Programming

Databases

Miscellaneous

~frank

I Co-Wrote 88 Unit Tests Using AI: A Developer's Journey

Testing has always been one of those tasks that developers know is essential but often find tedious. When I decided to add comprehensive unit tests to my NoteBookmark project, I thought: why not make this an experiment in AI-assisted development? What followed was a fascinating 4-hour journey that resulted in 88 unit tests, a complete CI/CD pipeline, and some valuable insights about working with AI coding assistants.

(Version française ici)

The Project: NoteBookmark

NoteBookmark is a .NET application built with C# that helps users manage and organize their reading notes and bookmarks. The project includes an API, a Blazor frontend, and uses Azure services for storage. You can check out the complete project on GitHub.

The Challenge: Starting from Zero

I'll be honest - it had been a while since I'd written comprehensive unit tests. Rather than diving in myself, I decided to see how different AI models would approach this task. My initial request was deliberately vague: "add a test project" without any other specifications.

Looking back, I realize I should have been more specific about which parts of the code I wanted covered. This would have made the review process easier and given me better control over the scope. But sometimes, the best learning comes from letting the AI surprise you.

The Great AI Model Comparison



GPT-4.1: Competent but Quiet

GPT-4.1 delivered decent results, but the experience felt somewhat mechanical. The code it generated was functional, but I found myself wanting more context. The explanations were minimal, and I often had to ask follow-up questions to understand the reasoning behind certain test approaches.

Gemini: The False Start

My experience with Gemini was... strange. Perhaps it was a glitch or an off day, but most of what was generated simply didn't work. I didn't persist with this model for long, as debugging AI-generated code that fundamentally doesn't function defeats the purpose of the exercise. Note that at the time of this writing, Gemini was still in preview, so I expect it to improve over time.

Claude Sonnet: The Clear Winner

This is where the magic happened. Claude Sonnet became my co-pilot of choice for this project. What set it apart wasn't just the quality of the code (though that was excellent), but the quality of the conversation. It felt like having a thoughtful colleague thinking out loud with me.

The explanations were clear and educational. When Claude suggested a particular testing approach, it would explain why. When it encountered a complex scenario, it would walk through its reasoning. I tried different versions of Claude Sonnet but didn't notice significant differences in results - they were all consistently good.

The Development Process: A 4-Hour Journey


Hour 1-2: Getting to Compilation

The first iteration couldn't compile. This wasn't surprising given the complexity of the codebase and the vague initial request. But here's where the AI collaboration really shined. Instead of manually debugging everything myself, I worked with Copilot to identify and fix issues iteratively.

We went through several rounds of:

  1. Identify compilation errors
  2. Discuss the best approach to fix them
  3. Let the AI implement the fixes
  4. Review and refine

After about 2 hours, we had a test project with 88 unit tests that compiled successfully. The AI had chosen xUnit as the testing framework, which I was happy with - it's a solid choice that I might not have picked myself if I was rusty on the current .NET testing landscape.

Hour 2.5-3.5: Making Tests Pass

Getting the tests to compile was one thing; getting them to pass was another challenge entirely. This phase taught me a lot about both my codebase and xUnit features I wasn't familiar with.

I relied heavily on the /explain feature during this phase. When tests failed, I'd ask Claude to explain what was happening and why. This was invaluable for understanding not just the immediate fix, but the underlying testing concepts.

One of those moment was learning about [InlineData(true)] and other xUnit data attributes. These weren't features I was familiar with, and having them explained in context made them immediately useful.


InlineData in the code


Hour 3.5-4: Structure and Style

Once all tests were passing, I spent time ensuring I understood each test and requesting structural changes to match my preferences. This phase was crucial for taking ownership of the code. Just because AI wrote it doesn't mean it should remain a black box. Let's repeat this: Understanding the code is essential; just because AI wrote it doesn't mean it's good.

Beyond Testing: CI/CD Integration

With the tests complete, I asked Copilot to create a GitHub Actions workflow to run tests on every push to main and v-next branches, plus PR reviews. Initially it started modifiying my existing workflow that takess care of the Azure deployment. I wanted a separate workflow for testing, so I interrupted (that's nice I wasn't "forced" to wait), and asked it to create a new one instead. The result was the running-unit-tests.yml workflow that worked perfectly on the first try.

This was genuinely surprising. CI/CD configurations often require tweaking, but the generated workflow handled:

  • Multi-version .NET setup
  • Dependency restoration
  • Building and testing
  • Test result reporting
  • Code coverage analysis
  • Artifact uploading

Code coverage


The PR Enhancement Adventure

Here's where things got interesting. When I asked Copilot to enhance the workflow to show test results in PRs, it started adding components, then paused and asked if it could delete the current version and start from scratch.

I said yes, and I'm glad I did. The rebuilt version created beautiful PR comments showing:

  • Test results summary
  • Code coverage reports (which I didn't ask for but appreciated)
  • Detailed breakdowns.

PR display


The Finishing Touches

No project is complete without proper status indicators. I added a test status badge to the README, giving anyone visiting the repository immediate visibility into the project's health.

test status badge


Key Takeaways


What Worked Well

  1. AI as a Learning Partner: Having Copilot explain testing concepts and xUnit features was like having a patient teacher
  2. Iterative Refinement: The back-and-forth process felt natural and productive
  3. Comprehensive Solutions: The AI didn't just write tests; it created a complete testing infrastructure
  4. Quality Over Speed: While it took 4 hours, the result was thorough and well-structured

What I'd Do Differently

  1. Be More Specific Initially: Starting with clearer scope would have streamlined the process
  2. Set Testing Priorities: Identifying critical paths first would have been valuable
  3. Plan for Visual Test Reports: Thinking about test result visualization from the start

Lessons About AI Collaboration

  • Model Choice Matters: The difference between AI models was significant
  • Conversation Quality Matters: Clear explanations make the collaboration more valuable
  • Trust but Verify: Understanding every piece of generated code is crucial
  • Embrace Iteration: The best results come from multiple refinement cycles

The Bigger Picture

This experiment reinforced my belief that AI coding assistants are most powerful when they're true collaborators rather than code generators. The value wasn't just in the 88 tests that were written, but in the learning that happened along the way.

For developers hesitant about AI assistance in testing: this isn't about replacing your testing skills, it's about augmenting them. The AI handles the boilerplate and suggests patterns, but you bring the domain knowledge and quality judgment.

Conclusion

Would I do this again? Absolutely. The combination of comprehensive test coverage, learning opportunities, and time efficiency made this a clear win. The 4 hours invested created not just tests, but a complete testing infrastructure that will pay dividends throughout the project's lifecycle.

If you're considering AI-assisted testing for your own projects, my advice is simple: start the conversation, be prepared to iterate, and don't be afraid to ask "why" at every step. The goal isn't just working code - it's understanding and owning that code.

The complete test suite and CI/CD pipeline are available in the NoteBookmark repository if you want to see the results of this AI collaboration in action.


Reading Notes #651

Welcome to another edition of my reading notes! This week brings some fascinating insights into AI's real-world impact, exciting developments in .NET and containerization, plus practical tools for improving our development workflows. 
A duck in a city fontain

From local AI-powered code reviews to Docker security hardening and the upcoming .NET 10 features, there's plenty to explore.

 

AI

Programming

Cloud

Miscellaneous

  • Enhance productivity with AI + Remote Dev (Brigit Murtaugh, Christof Marti, Josh Spicer, Olivia Guzzardo McVicker) - I love the dev container environments, they are so useful! And I also use the remote one when I'm not on my dev device so easy. Happy to see that Copilot will be right there with me.
~frank

Reading Notes #650

It's time for another edition of Reading Notes! This week brings exciting developments in the open source world, with major announcements from Microsoft making WSL and VS Code's AI features open source. We've also got updates on Azure Container Apps, .NET Aspire, and some great insights on developer productivity tools.
 
Let's dive into these interesting reads that caught my attention this week.

Cloud

Programming

Open Source

AI

  • Agent mode for every developer (Katie Savage) - Great new for everyone as the agent mode become available in so many different editor. This post also contains videos to shows some scenarios.

Podcasts

Miscellaneous

  • The experience is enough (Salma Alam-Naylor) - Whether we like it or not, we are people creature. We all need to stop hiding behind our screens and get out there!

~frank

Full-Stack Azure Deployment Made Easy: Containers, Databases, and More

Automating deployments is something I always enjoy. However, it's true that it often takes more time than a simple "right-click deploy." Plus, you may need to know different technologies and scripting languages.

(Version française ici)

But what if there was a tool that could help you write everything you need—Infrastructure as Code (IaC) files, scripts to copy files, and scripts to populate a database? In this post, we'll explore how the Azure Developer CLI (azd) can make deployments much easier.

What do we want to do?

Our goal: Deploy the 2D6 Dungeon App to Azure Container Apps.

This .NET Aspire solution includes:

  • A frontend
  • A data API
  • A database

Aspire resources schema


The Problem

In a previous post, we showed how azd up can easily deploy web apps to Azure.

If we try the same command for this solution, the deployment will be successful—but incomplete:

  • The .NET Blazor frontend is deployed perfectly.
  • However, the app fails when trying to access data.
  • Looking at the logs, we see the database wasn't created or populated, and the API container fails to start.

Let's look more closely at these issues.

The Database

When running the solution locally, Aspire creates a MySQL container and executes SQL scripts to create and populate the tables. This is specified in the AppHost project:

var mysql = builder.AddMySql("sqlsvr2d6")
                   .WithLifetime(ContainerLifetime.Persistent);
                
var db2d6 = mysql.AddDatabase("db2d6");

mysql.WithInitBindMount(source: "../../database/scripts", isReadOnly: false);

When MySQL starts, it looks for SQL files in a specific folder and executes them. Locally, this works because the bind mount is mapped to a local folder with the files.

However, when deployed to Azure:

  • The mounts are created in Azure Storage Files
  • The files are missing!

The Data API

This project uses Data API Builder (dab). Based on a single config file, a full data API is built and hosted in a container.

Locally, Aspire creates a DAB container and reads the JSON config file to create the API. This is specified in the AppHost project:

var dab = builder.AddDataAPIBuilder("dab", ["../../database/dab-config.json"])
                .WithReference(db2d6)
                .WaitFor(db2d6);

But once again, when deployed to Azure, the file is missing. The DAB container starts but fails to find the config file.

Logs of DAB failing to start


The Solution

The solution is simple: the SQL scripts and DAB config file need to be uploaded into Azure Storage Files during deployment.

You can do this by adding a post-provision hook in the azure.yaml file to execute a script that uploads the files. See an example of a post-provision hook in this post.

Alternatively, you can leverage azd alpha features: azd.operations and infraSynth.

  • azd.operations extends the provisioning providers and will upload the files for us.
  • infraSynth generates the IaC files for the entire solution.

💡Note: These features are in alpha and subject to change.

Each azd alpha feature can be turned on individually. To see all features:

azd config list-alpha

To activate the features we need:

azd config set alpha.azd.operations on
azd config set alpha.infraSynth on

Let's Try It

Once the azd.operation feature is activated, any azd up will now upload the files into Azure. If you check the database, you'll see that the db2d6 database was created and populated. Yay!

However, the DAB API will still fail to start. Why? Because, currently, DAB looks for a file, not a folder, when it starts. This can be fixed by modifying the IaC files.

One Last Step: Synthesize the IaC Files

First, let's synthesize the IaC files. These Bicep files describe the required infrastructure for our solution.

With the infraSynth feature activated, run:

azd infra synth

You'll now see a new infra folder under the AppHost project, with YAML files matching the container names. Each file contains the details for creating a container.

Open the dab.tmpl.yaml file to see the DAB API configuration. Look for the volumeMounts section. To help DAB find its config file, add subPath: dab-config.json to make the binding more specific:

containers:
    - image: {{ .Image }}
      name: dab
      env:
        - name: AZURE_CLIENT_ID
          value: {{ .Env.MANAGED_IDENTITY_CLIENT_ID }}
        - name: ConnectionStrings__db2d6
          secretRef: connectionstrings--db2d6
      volumeMounts:
        - volumeName: dab-bm0
          mountPath: /App/dab-config.json
          subPath: dab-config.json
scale:
    minReplicas: 1
    maxReplicas: 1

You can also specify the scaling minimum and maximum number of replicas if you wish.

Now that the IaC files are created, azd will use them. If you run azd up again, the execution time will be much faster—azd deployment is incremental and only does "what changed."

The Final Result

The solution is now fully deployed:

  • The database is there with the data
  • The API works as expected
  • You can use your application!
2D6 Dungeon App deployed


Bonus: Deploying with CI/CD

Want to deploy with CI/CD? First, generate the GitHub Action (or Azure DevOps) workflow with:

azd pipeline config

Then, add a step to activate the alpha feature before the provisioning step in the azure-dev.yml file generated by the previous command.

- name: Extends provisioning providers with azd operations
  run: azd config set alpha.azd.operations on     

With these changes, and assuming the infra files are included in the repo, the deployment will work on the first try.

Conclusion

It's exciting to see how tools like azd are shaping the future of development and deployment. Not only do they make the developer's life easier today by automating complex tasks, but they also ensure you're ready for production with all the necessary Infrastructure as Code (IaC) files in place. The journey from code to cloud has never been smoother!

If you have any questions or feedback, I'm always happy to help—just reach out on your favorite social media platform.

In Video

Here the video version of this blog post.


References